Publications
MathSciNet ID: 915658
zBMATH ID: wick.thomas
Scopus Author ID: 7003291822
Orcid ID: 0000-0002-1102-6332
Google scholar: Thomas Wick
Researchgate: Thomas Wick
github: tommeswick
Research at LUH: Thomas Wick (FIS)
See Google Scholar
or arXiv
zBMATH ID: wick.thomas
Scopus Author ID: 7003291822
Orcid ID: 0000-0002-1102-6332
Google scholar: Thomas Wick
Researchgate: Thomas Wick
github: tommeswick
Research at LUH: Thomas Wick (FIS)
♦Overview:
♦Preprints and submitted work:
♦Books:
5) | T. Richter, H. von Wahl, T. Wick;
Einführung in die numerische Mathematik - Begriffe, Konzepte und zahlreiche Anwendungsbeispiele Springer, 2. Auflage, 539 pages, December 2024 |
Link | ||||
4) | T. Wick (author), B. Hou (translator), Y. Dai (translator);
Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers (in Chinese) China Science Publishing and Media Ldt. (CSPM), Science Press, Beijing, http://www.sciencep.com, ISBN: 978-7-03-077763-8, 260 pages, March 2024 |
Link Info |
||||
3) | T. Wick;
Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers Radon Series on Computational and Applied Mathematics, Band 28, de Gruyter, October 2020 |
Link | ||||
2) | T. Richter, T. Wick;
Einführung in die numerische Mathematik - Begriffe, Konzepte und zahlreiche Anwendungsbeispiele Springer, 478 pages, December 2017 |
Link | ||||
1) | S. Frei, B. Holm, T. Richter, T. Wick, H. Yang (eds.);
Fluid-Structure Interaction: Modeling, Adaptive Discretisations and Solvers Radon Series on Computational and Applied Mathematics 20, de Gruyter, November 2017 |
Link |
♦Editorial, Popular science, Book reviews:
8) | P. Diehl, R. Lipton, A. Pandolfi, T. Wick; Fracture as an Emergent Phenomenon, Oberwolfach Report No. 1/2024, doi: 10.4171/OWR/2024/1 | OWR | ||||
7) | G. Alvarez Jauregui, M. Braack, S. Frei, T. Richter, O. Rubio Mercedes, D. Rueda Castillo, T. Wick; Special Issue: Peruvian Conference on Scientific Computing | PeCCC | SI | |||
6) | A. Fau, T. Wick;
L'art de bien faire des erreurs, Revue du Palais de la découverte, Paris, 2022 |
Revue | ||||
5) | T. Wick; Book review of: Alfio Quarteroni, Paola Gervasio; A Primer on Mathematical Modelling, Springer, Cham, 2020, xvi+238 pp., softcover. Unitext Vol. 121 SIAM Review, Vol. 63 (3), 2021 |
SIREV | ||||
4) | Y. von Kodolitsch, C. R. Blankart, T. Wick;
Interventionsmodell für Pandemien, Wissen und Innovationen aus niedersächsischen Hochschulen. Technologie-Informationen: Krisen - Risiken - Chancen, Vol. 3, 2020, p. 8 (in german) |
TI | ||||
3) | T. Wick; Book review of: Sergey I. Repin, Stefan A. Sauter: `Accuracy of Mathematical Models' EMS, 2020, 317 pp., Jahresber Dtsch Math-Ver, 2020 |
OA | Journal | |||
2) | J. Schröder, T. Wick;
Special Issue:Reliable Simulation Techniques in Solid Mechanics - Part I / II, GAMM-Mitteilungen, Vol. 43 (1+2), 2020 |
43/1 | 43/2 | |||
1) | T. Wick;
Zielorientierte Numerik für Multiphysiksimulationen, GAMM-Rundbrief, Nr. 2, 2018 (in german) |
♦Refereed Journal Publications:
114) | S. Lee, M.F. Wheeler, T. Wick;
A phase-field diffraction model for thermo-hydro-mechanical propagating
fractures, International Journal of Heat and Mass Transfer, Nov 2024, accepted |
|||||
113) | S. Beuchler, A. Demircan, B. Endtmayer, U. Morgner, T. Wick;
Mathematical modeling and numerical multigoal-oriented a posteriori error control and adaptivity for a stationary, nonlinear, coupled flow temperature model with temperature dependent density, Computers and Mathematics with Applications (CAMWA), Vol. 175, 2024, pp. 138-151 |
OA arXiv |
journal | |||
112) | L. Kolditz, S. Dray, V. Kosin, A. Fau, F. Hild, T. Wick;
Employing Williams’ series for the identification of fracture mechanics parameters from phase-field simulations, Engineering Fracture Mechanics (EFM), Vol. 307, 2024, No. 110298 |
OA HAL |
journal | |||
111) | G. Agarwal, J. Urrea, H. Wessels, T. Wick;
Parameter identification and uncertainty propagation of hydrogel coupled diffusion-deformation using POD-based reduced-order modeling, Computational Mechanics (CM), Jul 2024, published online |
OA arXiv |
journal | |||
110) | N. Noii, D. Milijasevic, A. Khodadadian, T. Wick;
An Efficient FEniCS Implementation for Coupling Lithium-Ion Battery Charge/Discharge Processes with Fatigue Phase-Field Fracture, Engineering Fracture Mechanics (EFM), Jun 2024, published online |
journal | ||||
109) | D. Khimin, J. Lankeit, M.C. Steinbach, T. Wick;
Analysis of a space-time phase-field fracture complementarity
model and its optimal control formulation, SIAM Journal on Mathematical Analysis (SIMA), Vol. 56 (5), 2024, pp. 6192-6212 |
arXiv | journal | |||
108) | W. Gao, I. Neuweiler, T. Wick;
A comparison study of spatial and temporal schemes for flow and transport problems in fractured media with large parameter contrasts on small length scales, Computational Geosciences, May 2024, published online |
OA | journal | |||
107) | H. v. Wahl, T. Wick;
A coupled high-accuracy phase-field fluid-structure interaction framework for Stokes fluid-filled fracture surrounded by an elastic medium, Results in Applied Mathematics (RINAM), Vol. 22, 2024, No. 100455 |
OA arXiv |
journal | |||
106) | H. Fischer, J. Roth, L. Chamoin, A. Fau, M.F. Wheeler, T. Wick;
Adaptive space-time model order reduction with dual-weighted residual (MORe DWR) error control for poroelasticity, Advanced Modeling and Simulation in Engineering Sciences (AMOS), Vol. 11, 2024, article number 9 |
OA arXiv |
journal | |||
105) | J. Urrea, M. Marino, T. Wick, U. Nackenhorst;
A comparative analysis of transient finite-strain coupled diffusion-deformation theories for hydrogels, Archives of Computational Methods in Engineering (ARCO), May 2024, published online |
OA arXiv |
journal | |||
104) | D. Jodlbauer, U. Langer, T. Wick, W. Zulehner;
Matrix-free Monolithic Multigrid Methods for Stokes and
Generalized Stokes Problems, SIAM Journal of Scientific Computing (SISC), Vol. 46, No. 3, pp. A1599-A1627 |
arXiv | journal | |||
103) | H. Fischer, J. Roth, T. Wick, L. Chamoin, A. Fau;
MORe DWR: Space-time goal-oriented error control for incremental POD-based ROM for time-averaged goal functionals, Journal of Computational Physics (JCP), Vol. 504, 2024, No. 112863 |
OA arXiv |
journal | |||
102) | J. Roth, M. Soszynska, T. Richter, T. Wick;
A monolithic space-time temporal multirate finite element framework for interface and volume coupled problems, Journal of Computational and Applied Mathematics (JCAM), Vol. 446, 2024, No. 115831 |
OA arXiv |
journal | |||
101) | J.P. Thiele, T. Wick;
Numerical modeling and open-source implementation of variational partition-of-unity localizations of space-time dual-weighted residual estimators for parabolic problems, Journal of Scientific Computing, Vol. 99, article number 25, March 2024 |
OA arXiv |
journal | |||
100) | Y. Dai, B. Hou, S. Lee, T. Wick;
A thermal-hydraulic-mechanical-chemical coupling model for acid fracture
propagation based on a phase-field method, Rock Mechanics and Rock Engineering, Mar 2024, published online |
journal | ||||
99) | Sh. Heydari, P. Knobloch, T. Wick;
Flux-corrected transport stabilization of an evolutionary cross-diffusion cancer invasion model, Journal of Computational Physics (JCP), Vol. 499, Feb 2024, No. 112711 |
arXiv | journal | |||
98) | V. Kosin, A. Fau, C. Jailin, F. Hild, T. Wick;
Parameter identification of a phase-field fracture model using integrated digital image correlation, Comp. Meth. Appl. Mech. Engrg. (CMAME), Vol. 420, Feb 2024, No. 116689 |
HAL | journal | |||
97) | P. Junker, T. Wick;
Space-time variational material modeling: a new paradigm demonstrated for thermo-mechanically coupled wave propagation, visco-elasticity, elasto-plasticity with hardening, and gradient-enhanced damage, Computational Mechanics (CM), Vol. 73, 2024, pp. 365-402 |
OA | journal | |||
96) | D. Khimin, M.C. Steinbach, T. Wick;
Space-time mixed system formulation of phase-field fracture optimal control problems, Journal of Optimization Theory and Applications (JOTA), Jul 2023, published online |
OA | journal | |||
95) | H. v. Wahl, T. Wick;
A high-accuracy framework for phase-field fracture interface reconstructions with application to Stokes fluid-filled fracture surrounded by an elastic medium, Comp. Meth. Appl. Mech. Engrg. (CMAME), Vol. 415 (2023), 116202 |
OA arXiv |
journal | |||
94) | L. Kolditz, K. Mang, T. Wick;
A modified combined active-set Newton method for solving phase-field fracture into the monolithic limit, Comp. Meth. Appl. Mech. Engrg. (CMAME), Vol. 414 (2023), 116170 |
arXiv | journal | |||
93) | M. Fuest, Sh. Heydari, P. Knobloch, J. Lankeit, T. Wick;
Global existence of classical solutions and numerical simulations of a cancer invasion model, ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 57(4), 2023, pp. 1893-1919 |
arXiv | journal | |||
92) | J. Roth, J. P. Thiele, U. Köcher, T. Wick;
Tensor-product space-time goal-oriented error control and adaptivity with partition-of-unity
dual-weighted residuals for nonstationary flow problems, Computational Methods in Applied Mathematics (CMAM), Vol. 24(1), 2024, pp. 185-214 |
arXiv | journal | |||
91) | V. Kosin, A. Fau, C. Jailin, B. Smaniotto, T. Wick, F. Hild;
A projection-based approach to extend digital volume correlation for 4D spacetime measurements, Comptes Rendus - Mecanique, Vol. 351, 2023, pp. 265-280 |
OA HAL |
journal | |||
90) | O. Melchert, S. Kinnewig, F. Dencker,
D. Perevoznik, S. Willms, I. Babushkin, M. Wurz, M. Kues,
S. Beuchler, T. Wick, U. Morgner, A. Demircan;
Soliton compression and supercontinuum spectra in nonlinear diamond photonics, Diamond & Related Materials, Vol. 136, 2023, 109939 |
OA arXiv |
journal | |||
89) | T. Knoke, S. Kinnewig, S. Beuchler, A. Demircan, U. Morgner, T. Wick;
Domain decomposition with neural network interface approximations for time-harmonic Maxwell's equations with different wave numbers, PeCCC special issue, Selecciones Mathematicas, Vol. 10(1), 2023, pp. 1-15, https://doi.org/10.17268/sel.mat.2023.01.01 |
OA arXiv |
journal | |||
88) | S. Shashanni, M. Teshnehlab, A. Khodadadian, M. Parvizi, T. Wick, N. Noii;
Using layer-wise training for road semantic segmentation in autonomous cars, IEEE Access, Vol. 11, 2023, pp. 46320-46329 |
OA | journal | |||
87) | V. Kosin, S. Beuchler, T. Wick;
A new mixed method for the biharmonic eigenvalue problem, Computers and Mathematics with Applications (CAMWA), Vol. 136, 2023, pp. 44-53 |
journal | ||||
86) | S. Beuchler, B. Endtmayer, J. Lankeit, T. Wick;
Multigoal-oriented a posteriori error control
for heated material processing using a generalized Boussinesq model, Comptes Rendus - Mecanique, Special Issue in Honor of Roland Glowinski, Mar 2023, published online |
OA arXiv |
journal | |||
85) | D. Khimin, M.C. Steinbach, T. Wick;
Space-time formulation, discretization, and computational performance studies
for phase-field fracture optimal control problems, Journal of Computational Physics (JCP), Vol. 470, 2022, 111554 |
arXiv | journal | |||
84) | E.J. Zaferan, M. Teshnehlab, A. Khodadadian,
C. Heitzinger, M. Vali, N. Noii, T. Wick;
Hyper-Parameter Optimization of Stacked Asymmetric Auto-encoders for
Automatic Personality Traits Perception, Sensors, SI Computer Vision and Machine Learning for Intelligent Sensing, Vol. 22(16), 6206, 2022 |
OA | journal | |||
83) | R. Agrawal, K. Ahuja, M. C. Steinbach, T. Wick;
SABMIS: Sparse approximation based blind multi-image steganography scheme, PeerJ Computer Science, 8:e1080, 2022 |
arXiv | journal | |||
82) | B. Hou, Y. Dai, M. Fan, K. Zhang, T. Wick, S. Lee;
Numerical simulation of pores connection by acid fracturing based on phase field method, Acta Petrolei Sinica, 2022, 43(6), pp. 849-859 |
OA | journal | |||
81) | C.J. van Duijn, A. Mikelic, T. Wick;
Mandel's problem as a benchmark for two dimensional nonlinear poroelasticity, Applicable Analysis, Jun 2022, published online |
journal | ||||
80) | K. Ahuja, B. Endtmayer, M.C. Steinbach, T. Wick;
Multigoal-oriented error estimation and mesh adaptivity for fluid-structure interaction, Journal of Computational and Applied Mathematics (JCAM), Vol. 412, 2022, 114315 |
arXiv | journal | |||
79) | N. Noii, A. Khodadadian, J. Ulloa, F. Aldakheel, T. Wick, S. Francois, P. Wriggers;
Bayesian inversion with open-source codes for various one-dimensional model problems in computational mechanics, Archives of Computational Methods in Engineering (ARCO), May 2022, published online |
OA | journal | |||
78) | P. Diehl, R. Lipton, T. Wick, M. Tyagi;
A comparative review of peridynamics and phase-field models for engineering fracture mechanics, Computational Mechanics (CM), Jan 2022, published online |
OA | journal | |||
77) | J. Roth, M. Schröder, T. Wick;
Neural network guided adjoint computations in dual weighted residual error estimation, SN Applied Sciences, Jan 2022, published online |
OA | journal | |||
76) | N. Noii, A. Khodadadian, T. Wick;
Bayesian Inversion Using Global-Local Forward Models Applied to Fracture Propagation in Porous Media, International Journal for Multiscale Computational Engineering (IJMCE), Vol. 3(2), 2022, pp. 57-79 | Green | journal | |||
75) | V. Mohammadi, M. Deghan, A. Khodadadian, N. Noii, T. Wick;
An asymptotic analysis and numerical simulation of a prostate tumor growth model via the generalized moving least squares approximation combined with semi-implicit time integration, Applied Mathematical Modelling, Vol. 104, 2022, pp. 826-849 |
journal | ||||
74) | T. Knoke, T. Wick;
Solving differential equations via artificial neural networks: findings and failures in a model problem, Examples and Counterexamples (EXCO), Vol. 1, 2021, 100035 |
OA | journal | |||
73) | N. Noii, M. Fan, T. Wick, Y. Jin;
A quasi-monolithic phase-field description for orthotropic anisotropic fracture with adaptive mesh refinement and primal-dual active set method, Engineering Fracture Mechanics (EFM), Vol. 258, 2021, 108060 |
journal | ||||
72) | S. Kinnewig, J. Roth, T. Wick;
Geometric multigrid with multiplicative Schwarz smoothers for
eddy-current and Maxwell’s equations in deal.II, Examples and Counterexamples (EXCO), Vol. 1, 2021, 100027 |
OA | journal | |||
71) | F. Aldakheel, N. Noii, T. Wick, O. Allix, P. Wriggers;
Multilevel Global-Local techniques for adaptive ductile phase-field fracture, Computer Methods in Applied Mechanics and Engineering (CMAME), Vol. 387, Dec 2021, 114175 |
arXiv | journal | |||
70) | N. Noii, A. Khodadadian, T. Wick;
Bayesian Inversion for Anisotropic Hydraulic Phase-Field Fracture, Computer Methods in Applied Mechanics and Engineering (CMAME), Aug 2021, published online |
arXiv | journal | |||
69) | K. Mang, A. Fehse, N. H. Kröger, T. Wick; A mixed phase-field fracture model for crack propagation in punctured EPDM strips, Theoretical and Applied Fracture Mechanics (TAFMEC), Oct 2021, 103076 | arXiv | journal | |||
68) | N. Noii, A. Khodadadian, J. Ulloa, F. Aldakheel,
T. Wick, S. Francois, P. Wriggers;
Bayesian inversion for unified ductile phase-field fracture, Computational Mechanics (CM), Aug 2021, published online |
OA arXiv |
journal | |||
67) | T. Wick;
Dual-weighted residual a posteriori error
estimates for a penalized phase-field slit discontinuity problem, Computational Methods in Applied Mathematics (CMAM), May 2021, published online |
journal | ||||
66) | M. Fan, Y. Jin, T. Wick;
A quasi-monolithic phase-field description for mixed-mode fracture using predictor-corrector mesh adaptivity, Engineering with Computers (EWCO), Jun 2021, published online |
OA | journal | |||
65) | S. Frei, T. Richter, T. Wick;
LocModFE: Locally modified finite elements for approximating interface problems in deal.II, Software Impacts, Vol. 8 (2021), 100070 |
github | journal | |||
64) | B. Endtmayer, U. Langer, T. Wick;
Reliability and efficiency of DWR-type a posteriori error estimates with
smart sensitivity weight recovering, Computational Methods in Applied Mathematics (CMAM), Vol. 21(2), 2021, pp. 351-371 |
arXiv | journal | |||
63) | T. Heister, T. Wick;
pfm-cracks: A parallel-adaptive framework for phase-field fracture propagation, Software Impacts, Vol. 6 (2020), 100045 |
github | journal | |||
62) | M. Jammoul, M.F. Wheeler, T. Wick;
A phase-field multirate scheme with stabilized iterative coupling for pressure driven fracture propagation in porous media, Computers and Mathematics with Applications (CAMWA), Vol. 91 (2021), pp. 176-191 |
journal | ||||
61) | M. Abbaszadeh, M. Dehghan, A. Khodadadian, N. Noii, C. Heitzinger, T. Wick;
A reduced-order variational multiscale interpolating element free Galerkin technique based on proper orthogonal decomposition for solving Navier-Stokes equations coupled with a heat transfer equation: Nonstationary incompressible Boussinesq equations, Journal of Computational Physics (JCP), Vol. 426, 2021, 109875 |
journal | ||||
60) | D. Jodlbauer, U. Langer, T. Wick;
Matrix-free multigrid solvers for phase-field fracture problems, Comp. Meth. Appl. Mech. Engrg. (CMAME), Vol. 372 (2020), 113431 |
arXiv | journal | |||
59) | J. Schröder, T. Wick, S. Reese, P. Wriggers,
R. Müller, S. Kollmannsberger, M. Kästner, A. Schwarz, M. Igelbüscher, N. Viebahn, H. R. Bayat, S. Wulfinghoff, K. Mang, E. Rank, T. Bog, D. d'Angella, M. Elhaddad,
P. Hennig, A. Düster, W. Garhuom, S. Hubrich, M. Walloth, W. Wollner, Ch. Kuhn, T. Heister; A selection of benchmark problems in solid mechanics and applied mathematics, Archives of Computational Methods in Engineering (ARCO), Vol. 28 (2021), pp. 713-751 |
OA | journal | |||
58) | M. Abbaszadeh, M. Dehghan, A. Khodadadian, T. Wick;
Legendre spectral element (LSEM) to simulate two-dimensional system of nonlinear stochastic advection-reaction-diffusion models, Applicable Analysis, Aug 2020 |
journal | ||||
57) | F. Aldakheel, N. Noii, T. Wick, P. Wriggers;
A global-local approach for hydraulic phase-field fracture in poroelastic media, Computers and Mathematics with Applications (CAMWA), Vol. 91, 2021, pp. 99-121 |
arXiv | journal | |||
56) | D. Jodlbauer, U. Langer, T. Wick;
Parallel Matrix-Free Higher-Order Finite Element Solvers for
Phase-Field Fracture Problems, Mathematical and Computational Applications, 25(3), 40, 2020 |
OA arXiv |
journal | |||
55) | A. Khodadadian, N. Noii, M. Parvizi, M. Abbaszadeh, T. Wick, C. Heitzinger;
A Bayesian estimation method for variational phase-field fracture problems, Computational Mechanics, Vol. 66 (2020), pp. 827-849 |
OA arXiv |
journal | |||
54) | M.F. Wheeler, T. Wick, S. Lee;
IPACS: Integrated Phase-Field Advanced Crack Propagation Simulator. An adaptive, parallel, physics-based-discretization phase-field framework for fracture propagation in porous media, Comp. Meth. Appl. Mech. Engrg. (CMAME), Vol. 367 (2020), pp. 113124 |
Accept | journal | |||
53) | C.J. van Duijn, A. Mikelic, T. Wick;
Mathematical theory and simulations of thermoporoelasticity, Comp. Meth. Appl. Mech. Engrg. (CMAME), Vol. 366 (2020), pp. 113048 |
HAL | journal | |||
52) | Y. von Kodolitsch, M. Prokoph, A. Sachweh, T. Kölbel, C. Detter, J. Berger, T. Wick, S. Debus, C.R. Blankart; How military history can inspire medical intervention, Cardiovascular Diagnosis and Therapy (CDT), Vol. 10 (6), 2020, pp. 2048-2053 |
OA | journal | |||
51) | T. Wick, W. Wollner;
Optimization with nonstationary, nonlinear monolithic fluid-structure interaction, International Journal for Numerical Methods in Engineering (IJNME), Vol. 122 (19), 2021, pp. 5430-5449 |
OA arXiv |
journal | |||
50) | B. Endtmayer, U. Langer, I. Neitzel, T. Wick, W. Wollner;
Multigoal-oriented optimal control problems with nonlinear PDE constraints, Computers and Mathematics with Applications (CAMWA), Vol. 79 (10), 2020, pp. 3001-3026 |
arXiv | journal | |||
49) | M. K. Brun, T. Wick, I. Berre, J. M. Nordbotten, F. A. Radu;
An iterative staggered scheme for phase field brittle fracture propagation with stabilizing parameters, Comp. Meth. Appl. Mech. Engrg. (CMAME), Vol. 361 (2020), 112752 |
OA arXiv |
journal | |||
48) | N. Noii, F. Aldakheel, T. Wick, P. Wriggers;
An adaptive global-local approach for phase-field modeling of anisotropic brittle fracture, Comp. Meth. Appl. Mech. Engrg. (CMAME), Vol. 361 (2020), 112744 |
arXiv | journal | |||
47) | V. Mohammadi, M. Dehghan, A. Khodadadian, T. Wick;
Numerical investigation on the transport equation in spherical coordinates
via generalized moving least squares and moving kriging least squares approximations, Engineering with Computers (EWCO), Vol. 37 (2021), pp. 1231-1249 |
journal | ||||
46) | B. Endtmayer, U. Langer, T. Wick;
Two-side a posteriori error estimates for the dual-weighted residual method, SIAM Journal on Scientific Computing (SISC), Vol. 42(1), A371-A394, 2020 |
arXiv | journal | |||
45) | K. Mang, T. Wick, W. Wollner;
A phase-field model for fractures in nearly incompressible solids, Computational Mechanics, Vol. 65 (2020), pp. 61-78 |
arXiv | journal | |||
44) | D. Feng, I. Neuweiler, U. Nackenhorst, T. Wick;
A time-space flux-corrected transport finite element formulation for solving multi-dimensional advection-diffusion-reaction equations, Journal of Computational Physics (JCP), Vol. 396 (2019), pp. 31-53 |
journal | ||||
43) | K. Mang, M. Walloth, T. Wick, W. Wollner;
Mesh adaptivity for quasi-static phase-field fractures based on a residual-type a posteriori error estimator, GAMM-Mitteilungen, first published Aug 2019 |
OA arXiv |
journal | |||
42) | I. Neitzel, T. Wick, W. Wollner;
An Optimal Control Problem
Governed by a Regularized Phase-Field Fracture Propagation Model. Part
II The Regularization Limit, SIAM Journal on Control and Optimization (SICON), Vol. 57(3), 2019, pp. 1672-1690 |
journal | ||||
41) | N. Noii, T. Wick;
A Phase-Field Description for Pressurized and Non-Isothermal Propagating Fractures, Comp. Meth. Appl. Mech. Engrg. (CMAME), Vol. 351 (2019), pp. 860-890 |
journal | ||||
40) | C. J. van Duijn, A. Mikelic, M.F. Wheeler, T. Wick;
Thermoporoelasticity via homogenization I. Modeling and formal two-scale expansions, International Journal of Engineering Science (IJES), Vol. 138 (2019), pp. 1-25 | HAL | journal | |||
39) | T. Wick, W. Wollner;
On the differentiability of stationary fluid-structure interaction problems
with respect to the problem data, Journal of Mathematical Fluid Mechanics (JMFM), Vol. 21 (3), 2019, pages 34 | journal | ||||
38) | A. Mikelic, M.F. Wheeler, T. Wick;
Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium, GEM - International Journal on Geomathematics, Vol. 10, 2019 Older preprint version ICES Preprint 14-18, July 2014 on 1418 Older preprint version ICES Preprint 13-15, June 2013 on 1315 | journal | ||||
37) | D. Jodlbauer, U. Langer, T. Wick;
Parallel Block-Preconditioned Monolithic Solvers for Fluid-Structure-Interaction Problems, International Journal for Numerical Methods in Engineering, Vol. 117 (6), 2019, pp. 623-643 |
Accept | journal | |||
36) | C.J. van Duijn, A. Mikelic, T. Wick;
A monolithic phase-field model of a fluid-driven fracture in a nonlinear poroelastic medium, Mathematics and Mechanics of Solids, Vol. 24 (5), 2019, pp. 1530-1555 |
journal | ||||
35) | S. Lee, A. Mikelic, M. F. Wheeler, T. Wick;
Phase-field modeling of two phase fluid filled fractures in a poroelastic medium, SIAM Multiscale Modeling and Simulation (MMS), Vol. 16 (4), 2018, pp. 1542-1580 | journal | ||||
34) | B. Endtmayer, U. Langer, T. Wick;
Multigoal-Oriented Error Estimates for Non-linear Problems, Journal of Numerical Mathematics (JNUM), Vol. 27(4), 2019, pp. 215-236 |
arXiv | journal | |||
33) | L. Failer, T. Wick;
Adaptive Time-Step Control for Nonlinear Fluid-Structure Interaction, Journal of Computational Physics (JCP), Vol. 366, 2018, pp. 448 - 477 |
Accept | journal | |||
32) | S. Weißer, T. Wick;
The dual-weighted residual estimator realized on polygonal meshes, Computational Methods in Applied Mathematics (CMAM), Vol. 18(4), 2018, pp. 753-776 |
pdf from CMAM |
journal | |||
31) | C. Goll, T. Wick, W. Wollner;
DOpElib: Differential Equations and Optimization Environment; A Goal Oriented
Software Library for Solving PDEs and Optimization Problems with PDEs, Archive of Numerical Software (ANS), Vol. 5(2), 2017, pp. 1-14 |
DOpElib | journal | |||
30) | T. Wick;
Modified Newton methods for solving fully monolithic phase-field quasi-static
brittle fracture propagation, Comp. Meth. Appl. Mech. Engrg., Vol. 325, 2017, pp. 577-611 |
journal | ||||
29) | T. Wick;
An error-oriented Newton/inexact augmented Lagrangian approach
for fully monolithic phase-field fracture propagation, SIAM J. Sci. Comput., Vol. 39(4), 2017, pp. B589-B617 |
journal | ||||
28) | B. Endtmayer, T. Wick;
A partition-of-unity dual-weighted residual approach for multi-objective goal functional error estimation applied to elliptic problems Computational Methods in Applied Mathematics (CMAM), Vol. 17(4), 2017, pp. 575-599 |
pdf from CMAM |
journal | |||
27) | I. Neitzel, T. Wick, W. Wollner;
An Optimal Control Problem Governed by a Regularized Phase-Field Fracture Propagation Model, SIAM Journal on Control and Optimization, Vol. 55(4), 2017, pp. 2271-2288 |
journal | ||||
26) | I. Toulopoulos, T. Wick;
Numerical methods for power-law diffusion problems, SIAM J. Sci. Comput., Vol. 39(3), 2017, pp. A681-A710 |
journal | ||||
25) | S. Lee, M.F. Wheeler, T. Wick;
Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches, Journal of Computational and Applied Mathematics, Vol. 314 (2017), pp. 40-60 |
1623 | journal | |||
24) | T. Wick;
Coupling fluid-structure interaction with phase-field fracture, Journal of Computational Physics, Vol. 327 (2016), pp. 67-96 |
Accept | journal | |||
23) | S. Frei, T. Richter, T. Wick;
Long-term simulation of large deformation, mechano-chemical fluid-structure interactions in
ALE and fully Eulerian coordinates, Journal of Computational Physics, Vol. 321 (2016), pp. 874-891 |
Accept | journal | |||
22) | S. Lee, M. F. Wheeler, T. Wick, S. Srinivasan;
Initialization of phase-field fracture propagation in porous media
using probability maps of fracture networks, Mechanics Research Communications, Vol. 80, 2017, pp. 16-23 |
journal | ||||
21) | S. Lee, M. F. Wheeler, T. Wick;
Pressure and fluid-driven fracture propagation in porous media using an
adaptive finite element phase field model, Comp. Meth. Appl. Mech. Engrg., Vol. 305 (2016), pp. 111–132 |
journal | ||||
20) | T. Wick;
Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity, Computational Mechanics, Vol. 57(6), 2016, pp. 1017-1035 |
journal | ||||
19) | S. Lee, A. Mikelic, M. F. Wheeler, T. Wick;
Phase-field modeling of proppant-filled fractures in a poroelastic medium, Comp. Meth. Appl. Mech. Engrg., Vol. 312 (2016), pp. 509-541 |
journal | ||||
18) | A. Mikelic, M. F. Wheeler, T. Wick;
Phase-field modeling of a fluid-driven fracture in a poroelastic medium, Computational Geosciences, Vol. 19(6), 2015, pp. 1171-1195 |
journal | ||||
17) | T. Wick, G. Singh, M. F. Wheeler;
Fluid-Filled Fracture Propagation using a Phase-Field Approach and Coupling to a Reservoir Simulator, SPE Journal, Vol. 21 (03), 2016, pp. 981-999 | journal | ||||
16) | D. Wick, T. Wick, R.J. Hellmig, H.-J. Christ;
Numerical simulations of crack propagation in screws with phase-field modeling, Comput. Mater. Sci., Vol. 109 (2015), pp. 367-379 |
journal | ||||
15) | T. Heister, M. F. Wheeler, T. Wick;
A primal-dual active set method
and predictor-corrector mesh adaptivity
for computing fracture propagation using a phase-field approach, Comp. Meth. Appl. Mech. Engrg., Vol. 290 (2015), pp. 466-495 |
journal | ||||
14) | A. Mikelic, M. F. Wheeler, T. Wick;
A quasistatic phase field approach to pressurized fractures, Nonlinearity, Vol. 28(5), 2015, pp. 1371-1399 |
journal | ||||
13) | A. Mikelic, M. F. Wheeler, T. Wick;
A phase-field method for propagating fluid-filled fractures coupled to
a surrounding porous medium, SIAM Multiscale Modeling and Simulation, Vol. 13(1), 2015, pp. 367-398 |
journal | ||||
12) | T. Richter, T. Wick;
Variational Localizations of the Dual-Weighted Residual Estimator, Journal of Computational and Applied Mathematics, Vol. 279 (2015), pp. 192-208 |
journal | ||||
11) | M. F. Wheeler, T. Wick, W. Wollner;
An Augmented-Lagrangian Method for the
Phase-Field Approach for Pressurized Fractures, Comp. Meth. Appl. Mech. Engrg., Vol. 271 (2014), pp. 69-85 |
1325 | journal | |||
10) | B. Ganis, M. Mear, A. Sakhaee-Pour, M. F. Wheeler, T. Wick; Modeling Fluid Injection in Fractures with a Reservoir Simulator Coupled to a Boundary Element Method, Computational Geosciences, Vol. 18(5), (2014), pp. 613-624 |
journal | ||||
9) | K. Kumar, M. F. Wheeler, T. Wick;
Reactive Flow and Reaction-Induced Boundary Movement in a Thin Channel, SIAM J. Sci. Comput., Vol. 35(6), 2013, pp. B1235-B1266 |
journal | ||||
8) | T. Wick;
Flapping and Contact FSI Computations with the
Fluid-Solid Interface-Tracking/Interface-Capturing Technique
and Mesh Adaptivity, Computational Mechanics, Vol. 53 (1), 2014, pp. 29-43 |
journal | ||||
7) | T. Richter, T. Wick;
Optimal Control and Parameter Estimation for Stationary
Fluid-Structure Interaction Problems, SIAM J. Sci. Comput., Vol. 35(5), 2013, pp. B1085-B1104 |
journal | ||||
6) | T. Wick;
Coupling of Fully Eulerian and Arbitrary Lagrangian-Eulerian
Methods for Fluid-Structure Interaction Computations, Computational Mechanics, Vol. 52 (2013), pp. 1113-1124 |
journal | ||||
5) | T. Wick;
Solving Monolithic Fluid-Structure Interaction Problems in Arbitrary Lagrangian Eulerian Coordinates with the deal.II Library, Archive of Numerical Software (ANS), Vol. 1 (2013), pp. 1-19 |
journal | ||||
4) | T. Wick;
Fully Eulerian Fluid-Structure Interaction
for Time-Dependent Problems, Comp. Meth. Appl. Mech. Engrg. 255 (2013), pp. 14-26 |
journal | ||||
3) | T. Wick;
Goal-Oriented Mesh Adaptivity for Fluid-Structure Interaction
with Application to Heart-Valve Settings, Archive of Mechanical Engineering 59 (2012), pp. 73-99 |
journal | ||||
2) | T. Wick;
Fluid-Structure Interactions using Different Mesh Motion Techniques, Comput. Struct. 89 (2011), pp. 1456-1467 |
journal | ||||
1) | T. Richter, T. Wick; Finite Elements for Fluid-Structure
Interaction in ALE and Fully Eulerian Coordinates, Comp. Meth. Appl. Mech. Engrg., Vol. 199 (41-44), 2010, pp. 2633-2642 |
journal |
♦Book articles (peer-reviewed):
8) | B. Endtmayer, U. Langer, T. Richter, A. Schafelner, T. Wick;
A Posteriori Single- and Multi-Goal Error Control and Adaptivity for Partial Differential Equations. In AAMS Vol 59, Part II, Elsevier, Oct 2024, in press |
arXiv | Link | |||
7) | A. Hehl, D. Khimin, I. Neitzel, N. Simon, T. Wick, W. Wollner;
Coefficient control of variational inequalities. In: SPP 1962, Phase 2, Abschlussband, Mar 2024, accepted |
arXiv | ||||
6) | D. Khimin, M.C. Steinbach, T. Wick;
Optimal control for phase-field fracture: algorithmic concepts and
computations. In:
Current Trends and Open Problems in Computational Mechanics, 2022 |
Book | ||||
5) | S. Basava, K. Mang, M. Walloth, T. Wick, W. Wollner;
Adaptive and Pressure-Robust Discretization of
Incompressible Pressure-Driven Phase-Field Fracture. In: Non-standard Discretisation Methods in Solid Mechanics, Lecture Notes in Applied and Computational Mechanics, Springer, 2022 |
arXiv | Book | |||
4) | D. Jodlbauer, T. Wick; A monolithic FSI solver applied to the FSI 1,2,3 benchmarks. In 'Fluid-structure interaction: Modeling, Adaptive Discretizations and Solvers' (Radon Series 20, de Gruyter), Nov 2017 | Link | ||||
3) | T. Wick; Coupling fluid-structure interaction with phase-field fracture: algorithmic details. In 'Fluid-structure interaction: Modeling, Adaptive Discretizations and Solvers' (Radon Series 20, de Gruyter), Nov 2017 | Link | ||||
2) | T. Wick;
Variational-monolithic ALE fluid-structure interaction: Comparison
of computational cost and mesh regularity using different mesh motion techniques. In: Modeling, Simulation and Optimization of Complex Processes HPSC 2015, Springer, pp 261-275, 2017 |
Link | ||||
1) | T. Richter, T. Wick;
On time discretizations of fluid-structure interactions, in: T. Carraro, M. Geiger, S. Körkel, and R. Rannacher (eds), "Multiple Shooting and Time Domain Decomposition Methods", Contributions in Mathematical and Computational Science, Springer, 2014. |
Link |
♦Conference and Workshop Proceedings:
49) | J.-H. Urrea-Quintero, H. Wessels, T. Wick; Towards model-guided feedback control of hydrogels bioprinting. In: PAMM, Sep 2024, published online | OA | journal | |||
48) | L.M. Kolditz, T. Wick; Matrix-Free Geometric Multigrid Preconditioning Of Combined Newton-GMRES For Solving Phase-Field Fracture With Local Mesh Refinement. In: Numerical Mathematics and Advanced Applications (ENUMATH 2023), accepted Aug 2024 | arXiv | ||||
47) | S. Frei, T. Knoke, M.C. Steinbach, A.-K. Wenske, T. Wick; Modeling And Numerical Simulation Of Fully Eulerian Fluid-Structure Interaction Using Cut Finite Elements. In: Numerical Mathematics and Advanced Applications (ENUMATH 2023), accepted Aug 2024 | arXiv | ||||
46) | V. Kosin, A. Fau, F. Hild, T. Wick; Goal oriented error estimation for space-time adaptivity in phase-field fracture. In: 16th World Congress in Computational Mechanics (WCCM), 21-26 July 2024, Vancouver, Canada | OA | Scipedia | |||
45) | J. Roth, P. Junker, T. Wick; Space-time variational material modeling: numerical simulations for the wave equation with velocity initial and final time conditions. In: 16th World Congress in Computational Mechanics (WCCM), 21-26 July 2024, Vancouver, Canada | OA | Scipedia | |||
44) | M. Parvizi, A. Khodadadian, S. Beuchler, T. Wick; Hierarchical LU preconditioning for the time-harmonic Maxwell equations. In: Domain Decomposition Methods in Science and Engineering XXVII, Springer, 2023, accepted | arXiv | Book | |||
43) | T. Knoke, S. Kinnewig, S. Beuchler, T. Wick; Neural Network Interface Condition Approximation in a Domain Decomposition Method applied to Maxwell's equations. In: Domain Decomposition Methods in Science and Engineering XXVII, Springer, 2023, accepted | Book | ||||
42) | N. Noii, T. Wick, A. Khodadadian; Global-Local Forward Models within Bayesian Inversion for Large Strain Fracturing in Porous Media. In: Domain Decomposition Methods in Science and Engineering XXVII, Springer, 2023, accepted | arXiv | Book | |||
41) | B. Endtmayer, A. Demircan, D. Perevoznik, U. Morgner, S. Beuchler, T. Wick; Adaptive finite element simulations of laser-heated material flow using a Boussinesq model. In: PAMM, 2023, published online | OA | Journal | |||
40) | H. Fischer, A. Fau, T. Wick; Reduced-order modeling for parametrized time-dependent Navier-Stokes equations. In: PAMM, 2023, published online | OA | Journal | |||
39) | D. Khimin, J. Roth, T. Wick; Space-time fluid-structure interaction: formulation and dG(0) time discretization. In: Proceedings of ECCOMAS 2022, Dec 2022 | OA | Scipedia | |||
38) | Y. von Kodolitsch, T. Wick, O. Pfennig, E. S. Debus, P. Schoenhagen, C. R. Blankart; System Dynamics and Intervention Design. In: Konferenzband Wiener Strategiekonferenz, Nov 2022 | TIB | ||||
37) | D. Khimin, M.C. Steinbach, T. Wick; Space-time phase-field fracture optimal control computations. In: Proceedings in Applied Mathematics and Mechanics, published online, 2023 | OA | Journal | |||
36) | J.P. Thiele, T. Wick; Space-time error control using a partition-of-unity dual-weighted residual method applied to low mach number combustion In: Proceedings of ICOSAHOM, 2020+1, accepted Mar 2022 | arXiv | ||||
35) | T. Wick; Adjoint-based methods for optimization and goal-oriented error control applied to fluid-structure interaction: implementation of a partition-of-unity dual-weighted residual estimator for stationary forward FSI problems in deal.II. In: Book of VI ECCOMAS Young Investigators Conference YIC2021, Dec 2021 | OA arXiv |
Book | |||
34) | T. Heister, K. Mang, T. Wick; Schur-type preconditioning of a phase-field fracture model in mixed form. In: Proceedings in Applied Mathematics and Mechanics (PAMM), 2021 | OA | Journal | |||
33) | S. Beuchler, S. Kinnewig, P. Koenig, T. Wick; A residual-based error estimator and mesh adaptivity for the time harmonic Maxwell equations applied to a Y-beam splitter. In: Proceedings in Applied Mathematics and Mechanics (PAMM), 2021 | OA | Journal | |||
32) | J.P. Thiele, T. Wick; Space-time PU-DWR error control and adaptivity for the heat equation. In: Proceedings in Applied Mathematics and Mechanics (PAMM), 2021 | OA | Journal | |||
31) | S. Beuchler, B. Endtmayer, T. Wick; Goal oriented error control for stationary incompressible flow coupled to a heat equation. In: Proceedings in Applied Mathematics and Mechanics (PAMM), 2021 | OA | Journal | |||
30) | D. Jodlbauer, U. Langer, T. Wick; Efficient monolithic solvers for fluid-structure interaction applied to flapping membranes. In: Domain Decomposition Methods in Science and Engineering XXVI, Springer, 2023, pp. 327-335 | DK | Book | |||
29) | S. Beuchler, S. Kinnewig, T. Wick; Parallel domain decomposition solvers for the time harmonic Maxwell equations. In: Domain Decomposition Methods in Science and Engineering XXVI, Springer, 2023, pp. 653-660 | arXiv | Book | |||
28) | K. Mang, T. Wick; Numerical Studies of Different Mixed Phase-Field Fracture Models for Simulating Crack Propagation in Punctured EPDM Strips. In: WCCM-ECCOMAS 2020 | OA | Scipedia | |||
27) | T. Wick;
On the adjoint equation in fluid-structure interaction In: WCCM-ECCOMAS 2020 |
OA | Scipedia | |||
26) | A. Fehse, N. H. Kröger, K. Mang, T. Wick;
Crack path comparisons of a mixed phase-field fracture modeland experiments
in punctured EPDM strips, Proceedings in Applied Mathematics and Mechanics (PAMM), Vol. 20 (1), 2021 |
OA | journal | |||
25) | B. Endtmayer, U. Langer, J.P. Thiele and T. Wick;
Hierarchical DWR Error Estimates for the Navier Stokes
Equation: h and p Enrichment, Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture notes in Computational Science and Engineering, Vol. 139, first published Aug 2020 |
arXiv | Book | |||
24) | C. Engwer, I.S. Pop, T. Wick;
Dynamic and weighted stabilizations of the
L-scheme applied to a phase-field model for fracture propagation, Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture notes in Computational Science and Engineering, Vol. 139, first published Aug 2020 |
arXiv | Book | |||
23) | K. Mang, M. Walloth, T. Wick, W. Wollner;
Adaptive Numerical Simulation of a Phase-field Fracture
Model in Mixed Form tested on an L-shaped Specimen with High Poisson Ratios, Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture notes in Computational Science and Engineering, Vol. 139, first published Aug 2020 |
arXiv | Book | |||
22) | M. Fan, T. Wick, Y. Jin;
A phase-field model for mixed-mode fracture, 8th GACM Colloquium on Computational Mechanics (GACM 2019), Kassel, 28-30 Aug, 2019 |
E-Book | ||||
21) | B. Endtmayer, U. Langer, I. Neitzel, T. Wick, W. Wollner;
Mesh adaptivity and error estimates applied to a regularized p-Laplacian constrained optimal control problem for multiple quantities of interest, PAMM, 2019 |
journal | ||||
20) | S. Frei, T. Richter, T. Wick;
Long-term simulation of large deformation, mechano-chemical FSI in ALE and fully Eulerian coordinates, Oberwolfach report, No. 39, 2018 |
|||||
19) | T. Heister, T. Wick;
Parallel solution, adaptivity, computational convergence, and open-source code of 2d and 3d pressurized phase-field fracture problems, PAMM, 2018 |
arXiv | journal | |||
18) | B. Endtmayer, U. Langer, T. Wick;
Multiple goal-oriented error estimates applied to 3D non-linear problems, PAMM, 2018 |
journal | ||||
17) | T. Almani, S. Lee, M.F. Wheeler, T. Wick;
Multirate coupling for flow and geomechanics applied to
hydraulic fracturing using an adaptive phase-field technique, SPE RSC 182610-MS, Feb. 2017, Montgomery, Texas, USA |
RSC | ||||
16) | P. Mital, T. Wick, M.F. Wheeler, G. Pencheva;
Discontinuous and enriched Galerkin methods for
phase-field fracture propagation in elasticity, Numerical Mathematics and Advanced Applications - ENUMATH 2015, Springer 2016 |
Book | ||||
15) | T. Wick;
Coupling fluid-structure interaction with phase-field fracture:
modeling and a numerical example, Numerical Mathematics and Advanced Applications - ENUMATH 2015, Springer 2016 |
Book | ||||
14) | T. Wick;
Goal-oriented error estimation and mesh adaptivity for phase-field-based fracture propagation, Proceedings of YIC-GACM conference in Aachen, July 20-23, Germany |
|||||
13) | T. Wick;
Dual-weighted residual adaptivity for phase-field fracture propagation, PAMM-Proceedings of Applied Mathematics and Mechanics, Vol. 15(1), 2015, pp. 619-620 |
journal | ||||
12) | T. Wick, S. Lee, M. F. Wheeler;
3D Phase-Field for Pressurized Fracture Propagation in Heterogeneous Media ECCOMAS and IACM Coupled Problems, May 2015 at San Servolo, Venice/Italy | E-book | ||||
11) | S. Frei, T. Richter, T. Wick;
Eulerian Techniques for Fluid-Structure Interactions - Part II: Applications. Numerical Mathematics and Advanced Applications, Proceedings of ENUMATH 2013, August 2013, Lausanne, Switzerland |
Book | ||||
10) | S. Frei, T. Richter, T. Wick;
Eulerian Techniques for Fluid-Structure Interactions - Part I: Modeling and Simulation. Numerical Mathematics and Advanced Applications, Proceedings of ENUMATH 2013, August 2013, Lausanne, Switzerland |
Book | ||||
9) | K. Kumar, T. van Noorden, M. F. Wheeler, T. Wick;
An ALE-based method for reaction-induced boundary movement towards clogging. Numerical Mathematics and Advanced Applications, Proceedings of ENUMATH 2013, August 2013, Lausanne, Switzerland |
Book | ||||
8) | T. Wick, G. Singh, M.F. Wheeler;
Pressurized-Fracture propagation using a phase-field approach coupled
to a reservoir simulator, SPE 168597-MS, SPE HFTC Proceedings |
web | ||||
7) | G. Singh, G. Pencheva, T. Wick, B. Ganis, M.F. Wheeler;
Impact of accurate fractured reservoir flow modeling on recovery predictions, SPE 168630-MS, SPE HFTC Proceedings |
web | ||||
6) | T. Wick, A. Elsheikh, M. F. Wheeler;
Parameter Estimation for the Coupled Biot-Lame-Navier Problem in Subsurface
Modeling, ARMA Conference in San Francisco, Jun 23-26, 2013 |
web | ||||
5) | T. Wick;
Stability estimates and numerical comparison of second-order time-stepping
schemes for fluid-structure interaction, Proc. ENUMATH 2011, Sep 6-10, 2011, Leicester, Great Britain | Book | ||||
4) | T. Wick;
An Energy Absorbing Layer for the Structure Outflow Boundary Applied to 2D
Heart Valve Dynamics with Multiple Structures, ECCOMAS - SIMBIO, Sep 21-23, 2011, Brussels, Belgium |
|||||
3) | T. Wick;
Adaptive Finite Elements for Monolithic Fluid-Structure
Interaction on a Prolongated Domain:
Applied to an Heart Valve Simulation, CMM 2011, Comput. Meth. Mech., May 9-12, 2011, Warsaw, Poland |
Jan Szmelter | ||||
2) | B. Janssen, T. Wick;
Block Preconditioning with Schur Complements for Monolithic Fluid-Structure Interactions, ECCOMAS CFD 2010, Lisbon, Portugal, 14-17 June 2010 (J.C.F. Pereira and A. Sequeira, eds) |
web | ||||
1) | T. Richter, T. Wick; Fluid-Structure Interactions in ALE and Fully Eulerian Coordinates, PAMM, 2010 | journal |
♦Lecture notes and classes with doi:
11) | T. Wick;
Modeling, Discretization, Solvers, Optimization, and Simulation of Multiphysics
Problems (ENS Paris-Saclay) Hannover : Institutionelles Repositorium der Leibniz Universität Hannover, 236 pages, 2024. DOI: https://doi.org/10.15488/9378 | Link | ||||
10) |
D. Khimin, L. Kolditz, V. Kosin, K. Mang, T. Wick;
Modeling, Discretization, Optimization, and Simulation of Phase-Field Fracture Problems. Hannover : Institutionelles Repositorium der Leibniz Universität Hannover, Lecture Notes. Institut für Angewandte Mathematik, Leibniz Universität Hannover, 2023, 125 S. DOI: https://doi.org/10.15488/15172 | Link | ||||
9) | T. Wick;
Function spaces and functional frameworks. Hannover : Institutionelles Repositorium der Leibniz Universität Hannover, Lecture Notes. Institut für Angewandte Mathematik, Leibniz Universität Hannover, 2023, 119 S. DOI: https://doi.org/10.15488/13832 | Link | ||||
8) | S. Kinnewig, L. Kolditz, J. Roth, T. Wick;
Numerical Methods for Algorithmic Systems and Neural Networks. Hannover : Institutionelles Repositorium der Leibniz Universität Hannover, Lecture Notes. Institut für Angewandte Mathematik, Leibniz Universität Hannover, 2022, 441 S. DOI: https://doi.org/10.15488/11897 | Link | ||||
7) | S. Amstutz, T. Wick;
Refresher course in maths and a project on numerical modeling done in twos. Hannover : Institutionelles Repositorium der Leibniz Universität Hannover, 2022-09-21, 220 S. Lecture notes for the class MAP 502 (STEEM) at Ecole Polytechnique, 2016-2022 Main DOI: https://doi.org/10.15488/11629 Specific DOI Version 2: https://doi.org/10.15488/12791 | Link | ||||
6) | M.C. Steinbach, J.P. Thiele, T. Wick;
Algorithmisches Programmieren (Numerische Algorithmen mit C++). Vorlesungsskript. Hannover: Institut für Angewandte Mathematik, Leibniz Universität Hannover, 2021, 254 S. DOI: https://doi.org/10.15488/11583 | Link | ||||
5) | T. Wick;
Interfaces. Presentation at CSMA Junior section workshop, 7-8, January 2021, Online. Hannover : Institutionelles Repositorium der Leibniz Universität Hannover, 2021.
DOI: https://doi.org/10.15488/10389 | Link | ||||
4) | T. Wick;
Modeling, Discretization, Optimization, and Simulation of Multiphysics Problems (IIT Indore) Hannover : Institutionelles Repositorium der Leibniz Universität Hannover, 171 pages, 2020. DOI: https://doi.org/10.15488/9378 | Link | ||||
3) | T. Wick;
Numerical Methods for Partial Differential Equations Hannover : Institutionelles Repositorium der Leibniz Universität Hannover, 442 pages, 2022. DOI: https://doi.org/10.15488/11709 Version 1: 369 pages, 2020 DOI: https://doi.org/10.15488/9248 | Link | ||||
2) | P. Bastian, T. Wick;
PeC3 Spring School on Introduction to Numerical Modeling with Differential Equations Hannover : Institutionelles Repositorium der Leibniz Universität Hannover, 2019. DOI: https://doi.org/10.15488/6427 DOI: Pre-course DOI: Exercises PeCCC - Peruvian Competence Center of Scientific Computing | Link | ||||
1) | K. Mang, T. Wick;
Numerical Methods for Variational Phase-Field Fracture Problems Hannover : Institutionelles Repositorium der Leibniz Universität Hannover, 2019. DOI: https://doi.org/10.15488/5129 | Link |
♦Lecture Notes and Documentation:
8) | T. Wick, S. Frei, M. Braack, C. Mehlmann, T. Richter;
Introduction to Scientific Computing SS 2022 Spring School on Introduction to Scientific Computing (Cusco, Peru) |
Webpage | |||
7) | L. Samolik, T. Wick;
Numerische Mathematik II (Numerik GDGL, Eigenwerte) SS 2019 Leibniz Universitaet Hannover, Mitschrift/Skriptum, Aug 2019 (v0), Sep 2024 (v1) |
||||
6) | T. Wick;
Modeling, Discretization, Optimization, and Simulation of
Fluid-Structure Interaction; Lecture notes, last update Nov 2019 |
||||
5) | C. Goll, T. Wick, W. Wollner; DOpE: Differential Equations Environment; Manual, updated since 2009 | dopelib.net | |||
4) | T. Richter, T. Wick; Einführung in die Numerik; Script, Universität Heidelberg, April 2012; extended to book in October 2017 | Book | |||
3) | T. Carraro, D. Gerecht, C. Goll, T. Wick; Optimierung mit partiellen Differentialgleichungen; Script, Universität Heidelberg, April 2012 | per E-Mail | |||
2) | F.-J. Delvos, T. Wick; Approximation in periodischen Räumen; Script/Notes, University of Siegen, February 2008 | Full text in pdf | |||
1) | F.-T. Suttmeier, T. Wick; Lösung von PDGL mit der Finite Elemente Methode; My notes, University of Siegen, April 2007 | Full text in pdf |
♦Reports:
3) | T. Wick, M.F. Wheeler, A. Mikelic;
A Phase-Field Framework for
Propagating Pressurized-Fractures in
Two- and Three Dimensions Computed with deal.II, Internal Technical Report, CSM group at ICES, Apr 2014 |
||||
2) | T. Wick; Numerical Integration in FEM; Master seminar script, University of Siegen, January 2008 | Full text in pdf | |||
1) | T. Wick; WITOP: Wissenschaftliches Topographie-Oberflächenprogramm mit Schnittstelle zur FE-Simulation des Mikrokosmos; Technical report ThyssenKruppSteel, March 2007 |
♦Contribution of findings:
2) | T. Wick; Variational phase-field modeling. In Workshop on Experimental and Computational Fracture Mechanics 2020, editors Patrick Diehl, Serge Prudhomme, Pablo Seleson, ORNL/TM-2020/1714, Nov 2020 | Link | |||
1) | R. Rannacher, T. Wick; Fluid-stucture interaction benchmarks FSI 1 and FSI 3 - numerical simulation and functional values using variational-monolithic ALE-FSI (Method 2b, p. 421ff). In 'Numerical Benchmarking of Fluid-Structure Interaction: a comparison of different discretization and solution approaches', eds. S. Turek, J. Hron, M. Razzaq, H. Wobker, M. Schäfer. Article appeared in 'Fluid Structure Interaction II: Modelling, Simulation, Optimization, eds. H.-J. Bungartz, M. Mehl, M. Schäfer, Springer, 2010. | Link |
♦Theses:
3) | T. Wick; Adaptive Finite Element Simulation of Fluid-Structure Interaction with Application to Heart-Valve Dynamics; PhD thesis (doctoral thesis), University of Heidelberg, November 2011 | Link | |||
2) | T. Wick; Untersuchung von Kopplungsmechanismen von Fluid-Struktur-Interaktion; Master thesis, University of Siegen, July 2008 | Abstract in pdf | |||
1) | T. Wick; Konvergenzbeschleunigung durch Extrapolation am Beispiel der Romberg-Integration; Bachelor thesis, University of Siegen, December 2006 | Full text in pdf |
Design by freecsstemplates